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A Predictive Model for Survival of Escherichia coli O157:H7
and Generic E. coli in Soil Amended with Untreated Animal
Manure
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ABSTRACT: This study aimed at developing a predictive model that captures the influences
of a variety of agricultural and environmental variables and is able to predict the concen-
trations of enteric bacteria in soil amended with untreated Biological Soil Amendments of
Animal Origin (BSAAO) under dynamic conditions. We developed and validated a Random
Forest model using data from a longitudinal field study conducted in mid-Atlantic United
States investigating the survival of Escherichia coli O157:H7 and generic E. coli in soils
amended with untreated dairy manure, horse manure, or poultry litter. Amendment type,
days of rain since the previous sampling day, and soil moisture content were identified as the
most influential agricultural and environmental variables impacting concentrations of viable
E. coli O157:H7 and generic E. coli recovered from amended soils. Our model results also
indicated that E. coli O157:H7 and generic E. coli declined at similar rates in amended soils
under dynamic field conditions.The Random Forest model accurately predicted changes in
viable E. coli concentrations over time under different agricultural and environmental con-
ditions. Our model also accurately characterized the variability of E. coli concentration in
amended soil over time by providing upper and lower prediction bound estimates. Cross-
validation results indicated that our model can be potentially generalized to other geographic
regions and incorporated into a risk assessment for evaluating the risks associated with ap-
plication of untreated BSAAO. Our model can be validated for other regions and predictive
performance also can be enhanced when data sets from additional geographic regions become
available.
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1. INTRODUCTION

Untreated biological soil amendments of ani-
mal origin (BSAAO) is a potential source of pro-
duce contamination, as it is a known reservoir
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for enteric bacteria including foodborne pathogens
such as Escherichia coli O157:H7 and Salmonella
(FAO/WHO, 2008; FDA, 2015). Once introduced
into the soil through application of BSAAO, these
pathogens have been shown to survive (Jiang, Mor-
gan, & Doyle, 2002) and can lead to contamina-
tion of produce growing on the field (FDA, 2015),
via various mechanisms; for example, direct con-
tact (FAO/WHO, 2008) or splash from irrigation
or rainfall (Cevallos-Cevallos, Danyluk, Gu, Vallad,
& van Bruggen, 2012; Cevallos-Cevallos, Gu, Dany-
luk, & van Bruggen, 2012). Subsequently, pathogens
may persist through the produce production chain
and consumption of produce contaminated with
pathogens poses a food safety risk to consumers
(Atwill et al., 2015; Chase, Partyka, Bond, & Atwill,
2019). Understanding the impact of agricultural and
environmental variables on enteric pathogen con-
centrations in amended soil is essential for assessing
risk of foodborne illness associated with consump-
tion of fresh produce grown in amended soils, as pub-
lished studies typically indicated such variables can
significantly impact enteric pathogen concentrations
in amended soil (Fremaux et al., 2007; Jiang et al.,
2002; Nicholson, Groves, & Chambers, 2005; van El-
sas, Semenov, Costa, & Trevors, 2011). For exam-
ple, enteric pathogen concentrations in amended soil
can be affected by environmental variables, such as
soil moisture, temperature, and precipitation (Cools,
Merckx, Vlassak, & Verhaegen, 2001; Jiang et al.,
2002; Moynihan, Richards, Ritz, Tyrrel, & Brennan,
2013; Park, Pachepsky, Shelton, Jeong, & Whelan,
2016; van Elsas et al., 2011; Vidovic, Block, & Ko-
rber, 2007; Williams, LeJeune, & McSpadden Gar-
dener, 2015). In addition, E. coli O157:H7 concen-
trations in amended soil are affected by agricultural
variables, such as manure type (Genereux, Breton,
Fairbrother, Fravalo, & Cote, 2015; Rogers et al.,
2011; Sharma et al., 2016), soil type (Franz et al.,
2008; Nicholson et al., 2005), soil physical and chem-
ical properties (Erickson et al., 2014; Ma et al., 2011;
Ma, Ibekwe, Crowley, & Yang, 2012; Mubiru, Coyne,
& Grove, 2000), and manure application methods
(Avery, Hill, Killham, & Jones, 2004).

Predictive modeling is a valuable tool for pro-
viding estimates of microbial population dynamics
(Esser, Leveau, & Meyer, 2015; McMeekin, Olley,
Ratkowsky, & Ross, 2002; Peleg & Corradini, 2011).
Models with various levels of complexity have been
proposed to describe changes in concentrations of
enteric bacteria in amended soil (Bezanson et al.,
2012; Franz et al., 2008; Ma et al., 2012; Ma, Mark

Ibekwe, Crowley, & Yang, 2014; Ongeng et al., 2014;
Ongeng, Muyanja, Geeraerd, Springael, & Rycke-
boer, 2011). Primary survival models, which describe
changes in microbial numbers over time under par-
ticular environmental conditions, have been widely
reported in the literature. Examples include the clas-
sical log-linear model, which has been used to fit sur-
vival curves of E. coli O157:H7 and/or Salmonella
enterica in manure and/or manure-amended soil
(Bolton, Byrne, Sheridan, McDowell, & Blair, 1999;
Ongeng et al., 2011; Ongeng et al., 2011; You et al.,
2006), as well as the Weibull model, which can be
fitted to survival data that exhibit simple nonlin-
ear deviations, such as concave and convex shapes
(Bezanson et al., 2012; Franz et al., 2008; Ma et al.,
2012; Ma et al., 2014; Naganandhini, Kennedy, Uyt-
tendaele, & Balachandar, 2015; Ongeng et al., 2011;
Wang et al., 2014; Yao et al., 2013; Zhang et al.,
2013). Secondary models also have been proposed
to describe the response of one or more parameters
of a primary model to changes in variables of inter-
est (Coroller, Jeuge, Couvert, Christieans, & Ellouze,
2015; Farakos, Frank, & Schaffner, 2013; Ratkowsky,
Olley, Mcmeekin, & Ball, 1982). Reviews and dis-
cussions of the limitations of selected primary and
secondary models for fate of enteric pathogens in
the agricultural environment are provided elsewhere
(Ongeng et al., 2014).

There are important limitations with regard to
the application of currently used survival models for
enteric bacteria. Specifically, the underlying primary
models typically assume a particular functional form
(e.g., log-linear, convex, or concave curves) for sur-
vival patterns of enteric pathogens in amended soil
over time. However, due to the complexity of the
survival patterns, such models cannot always estab-
lish a statistically good fit as measured by the co-
efficient of determinations (R2) or the root mean
squared error (RMSE). Furthermore, the underly-
ing primary models typically do not consider oscilla-
tions of enteric-pathogen concentrations in manure-
amended soil often observed in survival data sets
(Ongeng et al., 2011; Semenov, Franz, van Over-
beek, Termorshuizen, & van Bruggen, 2008; Vidovic
et al., 2007), and, hence, fail to accurately character-
ize the survival behavior of pathogens under agricul-
tural field environments (Ongeng et al., 2014).

The purpose of this work was to develop and
validate a nonparametric predictive model that can
provide accurate quantitative estimates of enteric
bacteria concentrations (log10cfu/g) in amended
soil with BSAAO under different agricultural and
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environmental conditions. Data were assembled
for our study using a longitudinal field experiment
conducted between 2011 and 2014 in mid-Atlantic
United States (Sharma et al., 2019). We used the
Random Forest approach (Breiman, 2001) to cap-
ture the underlying relationships among a variety
of dynamic environmental variables (e.g., ambient
temperature and soil moisture content), agricultural
variables (e.g., amendment type and depth of amend-
ment application), and observed enteric bacteria
concentrations in amended soil over time. We used
sensitivity analysis to identify influential variables
and characterize their relationship with bacteria
concentrations in amended soil. We evaluated the
proposed model’s performance in capturing distinct
observed bacteria survival patterns over time and in
predicting pathogen survival behavior in locations
other than those for which data were available.

2. MATERIALS AND METHODS

2.1. Data Description

A detailed description of the experimental de-
sign and microbial analysis is available in Sharma
et al. (2019). Briefly, data were assembled for this
study using a longitudinal field experiment con-
ducted between 2011 and 2014 investigating the sur-
vival of E. coli in manure-amended soils at three
different experiment sites over 12 different seasonal
trials: Southeast Agricultural Research & Extension
Center, in Manheim, PA; U.S. Department of Agri-
culture Beltsville Area Research Center in Beltsville,
MD (BARC); and University of Maryland Eastern
Shore, in Princess Anne, MD (UMES). Manure was
further collected from the following sources: dairy
manure solids and liquids, USDA-Agricultural Re-
search Service, Beltsville, MD; horse manure, Uni-
versity of Maryland; and poultry litter, University of
Maryland Eastern Shore poultry houses. For each of
the 12 seasonal trials conducted, rifampicin-resistant
(RifR) attenuated E. coli O157:H7 strains (attPTVS
154 and attPTVS 155) and RifR nonpathogenic
E. coli strains (TVS 353, 354, and 355) cultures pre-
pared in poultry litter extract were applied to soils
at either a high inoculum (106 CFU/ml) or low in-
oculum (104 CFU/ml) level. Following a randomized
complete block experimental design (n = 4), ma-
nure was applied at an application rate of 5 tons per
acre (4.54 metric tons per 0.4 ha) and evenly dis-
tributed over the experimental field plots, with ad-

ditional unamended plots as controls. Experimental
plots containing manure were spray-inoculated with
either low or high inocula; then plots were either left
surface-amended or mechanically tilled to a depth of
10 cm. Soil samples were taken periodically from the
experiment plots and populations of E. coli were enu-
merated using both direct plating and most probable
number (MPN) methods (Sharma et al., 2019). The
detection limit for MPN assay was –0.24 log10 MPN/g.
When E. coli O157:H7 and generic E. coli concen-
trations fell below the MPN detection limit, bag en-
richment was performed to determine the presence
or absence of E. coli O157:H7 and generic E. coli.
The detection limit for the bag enrichment was –0.52
log10 CFU/g. Additional data representing poten-
tial influential agricultural and experiment variables
were also collected, including experiment location,
season (determined by the start date of each trial),
soil management, amendment type, depth of amend-
ment application, bacteria type, and inoculation lev-
els. On each sampling day, in addition to levels of
E. coli in amended soils, other environmental data
variables were also collected, including soil moisture
content, ambient temperature, and amount of precip-
itation. If weather data were not reported for a spe-
cific experiment location, we identified the nearest
weather station and retrieved the ambient tempera-
ture as well as precipitation during the experiment
timeframe using the National Climatic Data Center
(http://www.ncdc.noaa.gov/).

2.2. Data Preparation

As described in Sharma et al. (2019), a total of
324 survival profiles (agricultural and environmen-
tal field conditions) were observed, determined by
unique combinations of the experimental variables,
including site, year, season, inoculum level, E. coli
type, amendment type, soil management, and depth
of manure application. For each of the 324 survival
profiles, E. coli concentrations were measured from
samples taken from four replicate field plots under
the same agricultural and environmental conditions,
yielding a total of 1,296 replicate field plots with
13,318 data observations. For each replicate field
plot, soil samples were collected periodically until
concentrations of E. coli O157:H7 or generic E. coli
declined below the bag enrichment detection limit
of –0.52 log10 CFU/g. When concentrations below
the detection limit were observed in two successive
scheduled sampling events, no additional samples for
those plots were collected and analyzed, assuming
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concentrations of E. coli O157:H7 or generic E. coli
would remain below limit of detection afterward. To
address the uncertainty associated with the nonde-
tect values, we assigned a random value between the
detection limit (–0.52 log10 CFU/g) and 1 log10 below
the detection limit (–1.52 log10 CFU/g) to each of the
nondetect observations.

2.3. Random Forest Model Development

We developed a predictive model using Ran-
dom Forest to describe the response of both E. coli
O157:H7 and generic E. coli concentrations (here-
after referred to as E. coli concentrations) in
amended soil (log10 CFU/g) to changes observed in
the agricultural and environmental conditions over
time described by the explanatory variables listed in
Table I. Random Forest, first proposed by Breiman
(2001), is an ensemble method consisting of thou-
sands of classification and regression trees (CART)
combined to obtain a prediction of the outcome of
interest (Jones & Linder, 2015). During the construc-
tion of a Random Forest, data are randomly selected
using bootstrap method, and then nonpruned classi-
fication and regression trees are built with a number
of variables randomly selected at each node to deter-
mine the best split. By utilizing these two randomiza-
tions during model construction, Random Forest pre-
dictions are robust to overfitting when new data are
introduced, which makes it preferable compared to
the CART method that involves a single tree (Jones
& Linder, 2015; Liaw & Wiener, 2002; Philibert et al.,
2011; Prasad, Iverson, & Liaw, 2006). Furthermore,
as a nonparametric approach, Random Forest does
not require distributional assumptions (e.g., normal-
ity) and has the ability to deal with nonlinearity and
interactions in complex data sets (Jones & Linder,
2015), making it a powerful alternative to traditional
approaches, such as multivariate regressions.

Observed E. coli concentrations in collected
amended soil samples demonstrated two types of
variability: (i) between-profile variability represent-
ing observed variability in E. coli concentrations in
amended soil under different agricultural and envi-
ronmental conditions; and (ii) within-profile variabil-
ity representing observed variability in E. coli con-
centrations in amended soil between replicate field
plots associated with each particular survival pro-
file under the same agricultural and environmental
conditions. To quantify the overall survival pattern
as well as between- and within-profiles variability in
E. coli concentrations in amended soil, we devel-

oped three Random Forest models to predict aver-
age, lower bound, and upper bound of E. coli concen-
trations on different days post soil amendment appli-
cation. The former model was built using the average
E. coli concentrations (log10cfu/g) in amended soil on
each sampling day across all different replicate field
plots associated with each of the 324 observed sur-
vival profiles. The latter two Random Forest mod-
els were built using the 2.5th and 97.5th percentiles
of the observed E. coli concentrations (log10cfu/g) in
amended soil on each sampling day across all differ-
ent replicate field plots. These two models represent
within-profile variability in E. coli concentrations in
amended soil under different agricultural and envi-
ronmental conditions.

We developed the Random Forest models in R
using the “randomForest” package (Liaw & Wiener,
2002) each with a forest size of 100,000 trees. To train
the forest, we randomly selected 70% of the 324 sur-
vival profiles, including all values associated with the
explanatory variables on different sampling days as
well as the corresponding concentration values. The
remaining part of the profiles was later used for vali-
dating the Random Forest model. Recursive feature
elimination method was used to select the optimal set
of variables to train the final model.

2.4. Model Sensitivity Analysis

The impact of the explanatory variables on the
Random Forest model response (e.g., average E. coli
concentrations in amended soil) was evaluated using
the permutation importance scores (Liaw & Wiener,
2002). The permutation importance scores reflect the
decrease in prediction accuracy resulting from per-
mutation of an explanatory variable. If permuting the
value of an explanatory variable does not affect (or
increase) the prediction accuracy, then the variable is
not related to the model response. However, if per-
muting the value decreases the prediction accuracy
of the model, the variable is related to the model re-
sponse, and the larger the decrease, the stronger the
relationship (Genuer, Poggi, & Tuleau-Malot, 2010;
Jones & Linder, 2015).

We also generated partial dependence plots
(PDPs), used to interpret complex algorithms
to investigate how influential explanatory vari-
ables were related to the Random Forest model
response (Friedman, 2001). PDPs are graphical
visualizations of the marginal effect of a given ex-
planatory variable (e.g., inoculation level) or multi-
ple explanatory variables (e.g., inoculation level and
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Table I. Agricultural and Environmental Explanatory Variables Used in the Survival Model

Explanatory Variables Units Observed Values

Depth of manure application Unitless Surface or tillage
Soil management Unitless Organic or conventional
Amendment type Unitless Dairy, poultry, horse, unamended
Experiment site Unitless BARC, PA, UMES
Season Unitless Spring, summer, fall, winter
E. coli type Unitless E. coli O157:H7 or generic E. coli
Inoculation level log (cfu/g) 0.1–7.3
Sampling day (i.e., days postinoculation) Days 0–219
Soil moisture content on the sampling day % 0–54.8
Ambient temperature on the sampling day °C 0.6–30
Average ambient temperature over the week prior to the sampling day °C –0.3–28.2
Average ambient temperature since the previous sampling day °C 0.8–28.25
Precipitation on the sampling day Mm 0–96.7
Average daily precipitation over the week prior to the sampling day Mm 0–27.7
Average daily precipitation since the previous sampling day Mm 0–49.8
Days of rain during the week prior to the sampling day Days 0–6
Days of rain since the previous sampling day Days 0–37

days postinoculation) on a Random Forest model re-
sponse (e.g., average E. coli concentrations). Typi-
cally, PDPs are restricted to only one or two explana-
tory variables to foster understanding, but as a result,
PDPs can be misleading when there are significant
hidden higher order interactions. Despite this, PDPs
can still be extremely useful for knowledge discov-
ery in large data sets, especially when the Random
Forest is dominated by lower order interactions and
main effects. Statistical explanation of the PDPs is
provided elsewhere (Genuer et al., 2010). PDPs were
generated in R using the “partialPlot” function in the
“randomForest” package (Liaw & Wiener, 2002).

2.5. Model Validation

To validate the Random Forest models, we used
the portion of the survival profiles that was not ini-
tially used in the training step (remaining 30% of the
324 survival profiles). We compared the predicted
model response values (e.g., average E. coli con-
centrations in amended soil) in our validation data
set with the observed values from the survival data
set, for the same sampling days. We further calcu-
lated the prediction error (PE) as the difference be-
tween observed and predicted values. The acceptable
prediction zone (APZ) approach was then followed
to determine the predictive performance of the de-
veloped Random Forest models (Oscar, 2005). The
APZ was established to be between –1.0 log10cfu/g
(fail-safe) and 0.5 log10cfu/g (fail-dangerous), and the
percentage of PEs in the APZ was used as a measure-

ment of predictive performance. A model with a per-
centage of PEs in the APZ over 70% is considered to
provide acceptable and validated predictions (Oscar,
2009). Model performances were also evaluated by
regressing the predicted model response values (e.g.,
average E. coli concentrations) against the observed
values (in log-scale) and comparing against the 1:1
line. Additionally, the coefficient of determinations
(R2) and the normalized RMSE (NRMSE) were used
to measure the model performance. NRMSE was cal-
culated as the RMSE divided by the difference be-
tween the maximum and minimum observed E. coli
concentration (log10cfu/g). NRMSE was expressed as
percentage and an NRMSE value close to 0 indicates
a good predictive performance.

To test the robustness of the model predictions,
we repeated the validation step 2,000 times. In each
repeat, a different set of 70% of the 324 survival pro-
files were randomly selected as a training data set
for developing all three Random Forest models dis-
cussed above, and the remaining 30% profiles were
used as a testing data set for model validation. By re-
peating the validation 2,000 times, the variabilities in
the goodness-of-fit measures (e.g., NRMSE, R2, and
APZ) were quantified.

In order to investigate whether we could extrap-
olate the model predictions to other geographic re-
gions, we conducted a cross-validation analysis based
on the three experiment locations available in the
survival data set. In cross-validation, we trained our
Random Forest models using data from two of the
three experiment locations (PA, BARC, and UMES)
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and using data from the other experiment location
as the testing data set to evaluate the predictive per-
formance of the corresponding models. This process
was repeated three times, each time with a different
experiment location as the testing data set.

3. RESULTS

3.1. Sensitivity Analysis Results

Fig. 1 shows the list of the explanatory vari-
ables, rank ordered based on the relative magnitude
of their calculated permutation scores as a measure
of variable importance with respect to their impacts
on the predicted average E. coli concentrations in
amended soil. Similar analysis was performed for the
other two Random Forest models representing the
95% variability in within-profiles E. coli concentra-
tions in amended soil (results not shown here). Our
results indicated that days postinoculation and inoc-
ulation level were among the top variables with the
highest permutation importance scores. Among the
environmental variables, days of rain since the pre-
vious sampling day and soil moisture content had
the largest effect on the predicted average E. coli
concentrations in amended soil. Among agricultural
variables, predicted average concentrations of E. coli
were mostly influenced by amendment type.

Fig. 2 displays the PDPs for selected explana-
tory variables listed in Table I. The predicted aver-
age concentrations of E. coli O157:H7 and generic
E. coli declined with time (i.e., days postinocula-
tion) (Fig. 2A). As expected, higher E. coli O157:H7
and generic E. coli concentrations were predicted
when amended soils were inoculated at higher con-
centration levels (Fig. 2B). For the environmental
variables (Figs. 2C and D), higher predicted aver-
age E. coli O157:H7 and generic E. coli concentra-
tions in amended soils were generally associated with
higher soil moisture content and higher days of rain
since the previous sampling day. For the agricultural
variables, average concentrations of E. coli O157:H7
and generic E. coli were higher in soils amended
with poultry litter, compared with soil amended with
horse manure or dairy manure (Fig. 2E). In general,
predicted average generic E. coli concentrations in
amended soil are also slightly higher compared with
E. coli O157:H7 concentrations. As shown in Fig. 2A,
despite the slight difference in concentrations, the
two curves were almost parallel, indicating generic
E. coli and E. coli O157:H7 in amended soils declined

over time at a similar rate. Similar parallel patterns
were observed in Fig. 2B–D, suggesting the impact
of agricultural and environmental variables on pre-
dicted E. coli concentrations in amended soils is sim-
ilar between the two different E. coli strains.

We also investigated the two-way interac-
tion effects between selected explanatory variables,
including days postinoculation, inoculation level
(log10cfu/g), and soil moisture content (%), using the
two-dimensional PDPs. As expected, Fig. 3A shows
considerable interaction effect between inoculation
level and days postinoculation, with inoculation level
having its strongest impact on predicted average con-
centrations of both E. coli O157:H7 and generic E.
coli during the first 50 days, and then became less im-
pactful over time. Similarly, there is an interaction ef-
fect between days postinoculation and soil-moisture
content (Fig. 3B). The predicted average concentra-
tions varied dramatically due to changes in the soil
moisture content within the first 50 days. Beyond
the first 50 days, changes in the soil moisture con-
tent became less impactful through time, resulting in
smaller range of variability in predicted concentra-
tion of both E. coli strains.

3.2. Validation Results

From the 2,000 repeated validation, the NRMSE
values of the predicted average E. coli concentrations
in amended soils ranged between 5.2% and 8.6%,
with a mean of 6.7%; the R2 values ranged between
0.79 and 0.91, with a mean of 0.87; and the APZ val-
ues ranged between 81% and 92%, with a mean of
88%. Validations performed for the other two Ran-
dom Forest models representing the 95% variability
in within-profiles E. coli concentrations in amended
soil also showed narrow ranges for NRMSE, R2, and
APZ values (results not shown here). These narrow
ranges indicate that the model validation is robust
and not sensitive to the random partitioning of the
survival data set used during the training step of the
model development. For the remaining analyses dis-
cussed in the article, results were based on the Ran-
dom Forest model with the lowest NRMSE value.

We found statistically significant correlations
(p < 0.05, R2 = 0.89 for both E. coli O157:H7 and
generic E. coli) between the observed and predicted
average concentrations, with no significant deviation
from the 1:1 line (Fig. 4). Additionally, we compared
the observed average E. coli concentrations in
the validation data set with the predicted average
E. coli concentrations from the Random Forest
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Fig. 1. Variable importance scores for the ex-
planatory variables included in the Random
Forest model for predicting average concen-
tration of E. coli O157:H7 and generic E. coli
in the amended soil.

model (Fig. 5). Results showed that the predicted
median and the interquartile values were in good
agreement with the observed values for both E. coli
strains. The validation results also showed that the
Random Forest model has an NRMSE of 5.0% and
an R2 value of 0.90 when predicting the average
concentration of E. coli O157:H7 and an NRMSE
of 5.5% and an R2 value of 0.90 when predicting the
average concentration of generic E. coli. When com-
pared with the observed values, 94% and 91% of the
predicted values for E. coli O157:H7 and generic E.
coli concentrations were within the acceptable fail-
safe and fail-dangerous zone (–1.0 to 0.5 log10cfu/g),
respectively, which is above the threshold for an
acceptable predictive performance (70%) (Oscar,
2005, 2009). In addition, the developed upper and
lower bound Random Forest models also showed
good performance in predicting the range of E.
coli concentrations in amended soil under different
conditions (Table II).

In cross-validation, the NRMSE, R2, and APZ
values of the predicted average concentrations of
E. coli in amended soils ranged from 9% to 13.5%,
0.60 to 0.75, and 66% to 82%, respectively, when

Table II. Predictive Performance Measures for Random Forest
Models Predicting (i) Average; (ii) Lower Bound; and (iii) Upper

Bound Concentrations of E. coli in Amended Soil

Prediction Performance Measuresa

Models NRMSE (%) R2 APZ (%)

Model (i): average 5.2 0.90 93
Model (ii): lower bound 6.1 0.84 90
Model (iii): upper bound 6.3 0.87 90

aNRMSE, normalized root mean squared error; R2, coefficient of
determinations; APZ, acceptable prediction zone.

data from one experiment location were left out
from the model development and used as a valida-
tion set (Table III). The developed models showed
satisfactory predictive performance when the UMES
data set was among the two data sets used for
training the Random Forest model (e.g., R2 value
of 0.75 with an APZ value of 80% when PA and
UMES data sets were used). The model performance
was less satisfactory when this experiment location
was not used to train the model. No survival trial
was conducted during the summer season at PA
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Fig. 2. Partial dependence plots for selected explanatory variables: (A) days postinoculation; (B) inoculation level; (C) days of rain since
the previous sampling day; (D) soil moisture content; (E) amendment type; and (F) E. coli type.

and BARC experiment locations, whereas survival
trials were conducted in all four seasons at UMES.
Thus, the Random Forest model developed using
data from the PA and BARC experiment locations
was not trained with information required to predict
E. coli survival patterns during summer. Overall,

predictions from the cross-validation models were
less accurate compared to the model trained using
data from all three experiment locations (Tables II
and III). Reduction in prediction accuracy when
two of the three experiment locations were used for
model training can also be attributed to the smaller
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Fig. 3. Two-variable partial dependence plots representing interaction effects between: (A) inoculation level and days postinoculation; and
(B) soil moisture content (%) and days postinoculation on predict average E. coli concentrations in amended soils.

size of the training data set compared to the model
trained using all three experiment locations.

3.3. Evaluating the Predictive Model Performance
in Capturing Distinct Survival Patterns

As indicated in Sharma et al. (2019), the ob-
served E. coli concentrations in amended soil from
the field experiment showed a variety of survival pat-
terns with respect to time and most survival profiles
fell into one of six patterns: (i) exponential decline;
(ii) initial increase and exponential decline; (iii) ex-
ponential decline with intermediate peak; (iv) expo-

nential decline with one moderate peak; (v) initial
increase with exponential decline and one moder-
ate peak; (vi) initial increase with exponential de-
cline and two moderate peaks. We evaluated the
performance of our Random Forest models in cap-
turing these distinct survival patterns over time.
Fig. 6 shows a comparison between the observed
and predicted concentrations of E. coli O157:H7 and
generic E. coli in amended soil for selected profiles
(excluded from data set used to develop the models)
that showed the distinct survival patterns mentioned
above. Fig. 6A shows the Random Forest model
predictions for a particular survival profile that



10 Pang et al.

Table III. Predictive Performance Measures from Cross-Validation

Prediction Performance Measures
b

Training Locations
a

Validation Location
a

NRMSE R
b

APZ

PA & UMES BARC 9.0% 0.75 80%
PARC & UMES PA 9.1% 0.74 82%
PA & BARC UMES 13.5% 0.60 66%

aIn each cross-validation, data from one experiment location were left out from model development and used as the validation data set. The
other two data sets were used for training the Random Forest model.
bNRMSE, normalized root mean squared error; R2, coefficient of determinations; APZ, acceptable prediction zone. Values were calculated
based on the predictive average concentrations in amended soil.
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Fig. 4. Plot of the correlation between predicted and observed av-
erage concentrations of: E. coli O157:H7 (A) and generic E. coli
(B) in amended soil.

showed an exponential decline observed under the
following condition: generic E. coli in conventional
soil amended with surface applied dairy manure at
UMES experiment location in winter season. A total
of eight replicate trials were conducted for this sur-
vival profile. As shown in Fig. 6A, the predicted av-
erage E. coli concentrations were in good agreement
with the observed concentrations in this survival pro-
file and the within-profile variability across the eight
replicate trials were captured as most of the observa-
tions fell inside the predicted upper and lower bound
concentrations. Similar observations were found for
other survival profiles (Figs. 6B–F). Overall, the Ran-
dom Forest models were able to capture the complex,
sometimes nonmonotonic relationships and changes
in concentrations observed in survival profiles over
time. In addition, the Random Forest models also
accurately characterized the within-profile variability
of E. coli concentrations in amended soil.

4. DISCUSSION

Predictive models, which here are used to char-
acterize the relationships among different agricul-
tural and environmental variables and concentra-
tions of enteric bacteria in BSAAO-amended soils,
are an integral part of any risk assessment effort to
better understand public health risks associated with
application of untreated BSAAO. Although the fate
of enteric bacteria in amended soils has been the
subject of many previous works, only a few have
developed predictive models to investigate the im-
pact of agricultural and environmental variables and
to predict the concentration of enteric bacteria over
time under dynamic conditions (Franz, Schijven, de
RodaHusman, & Blaak, 2014; Ongeng, Muyanja,
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Ryckeboer, Springael, & Geeraerd, 2011; Park et al.,
2016; Semenov, Franz, & van Bruggen, 2010).

We report here a predictive model for the fate
of E. coli O157:H7 and generic E. coli in amended
soil, which determined the relationship between a
variety of variables and the persistence of the E.
coli under dynamic agricultural and environmental
conditions in the U.S. mid-Atlantic region. Many
commonly used primary predictive models are static
in nature and thus are not appropriate for predict-
ing survival observed under dynamic environmen-
tal conditions (Franz, van Hoek, Bouw, & Aarts,
2011; Ongeng et al., 2014; Ongeng et al., 2011; On-
geng et al., 2014). For example, Ongeng et al. (2011)
investigated the survival of Salmonella in manure-
amended soil under tropical agricultural field con-
ditions. Despite being able to develop a predictive
model based on laboratory experiments performed
under constant temperature conditions, the isother-
mally derived model underestimated the survival of
Salmonella in manure-amended soil under dynamic
conditions (Ongeng et al., 2011). This indicated that
survival of enteric bacteria in amended soils un-
der dynamic conditions can be influenced by chang-
ing environmental conditions, and thus cannot be
accurately estimated from survival observed under
isothermal conditions (Ongeng et al., 2011; Ongeng
et al., 2011; Semenov et al., 2010). By using Random
Forest, we were able to model and evaluate the effect
of the observed dynamic changes in environmental
conditions (e.g., temperature and precipitation) on
the complex E. coli survival patterns(e.g., nonmono-
tonic) in amended soil.

Predictive models derived from monotonic pri-
mary models (e.g., log-linear and Weibull survival
models) do not consider oscillations in bacteria con-
centrations, thus are not suitable for prediction of
pathogen survival in agricultural environment where
such oscillations are often observed (Ongeng et al.,
2014). In an effort to overcome this limitation, Se-
menov et al. (2010) developed a COLIWAVE sim-
ulation model to predict the survival of E. coli
O157:H7 in manure-amended soils under dynamic
environmental conditions. By separating the relative
growth and death rates, the COLIWAVE model was
able to mimic the oscillations (nonmonotonic behav-
ior) in E. coli O157:H7 observed in the survival data
and improved the prediction accuracy by 10–15%
comparing to that of the monotonic Weibull model
(Semenov et al., 2010). As a semi-mechanistic model,
COLIWAVE model was developed based on vari-
ables corresponded to existing mechanistic knowl-

edge about microbial survival. Although a mecha-
nistic model can describe known causal relationships
between selected variables and pathogen survival in
amended soil, it typically involves simplified assump-
tions that may not hold true under realistic and highly
variable field conditions (Baker, Pena, Jayamohan, &
Jerusalem, 2018; Ongeng et al., 2014; Semenov et al.,
2010). Additionally, the specific nature of mechanis-
tic models prohibits the inclusion of potential influen-
tial variables (where underlying mechanisms of their
impact were not fully established) to achieve more
universal predictions (Baker et al., 2018; Ongeng
et al., 2014). Machine learning models, such as Ran-
dom Forest, focus on providing accurate predictions
through the use of large-scale data sets (Baker et al.,
2018). Because of the availability of the large-scale
survival data set collected through the comprehen-
sive long-term field study conducted by Sharma et al.
(2019), we were able to utilize the power of machine
learning to improve the prediction of our model. Our
predictive model also considered a comprehensive
list of agricultural and environmental variables, in-
cluding those that have been suggested for inclusion
in predictive survival models, such as soil moisture
(Franz et al., 2014; Semenov et al., 2010), as well
as precipitation, manure-application methods, and
amendment type (Park et al., 2016).

We were able to identify influential agricultural
and environmental variables and characterized their
impact on E. coli survival in amended soils using
our predictive model. E. coli O157:H7 and generic
E. coli concentrations in amended soils were shown
to be related to the amendment type, with higher
predicted concentrations of E. coli O157:H7 and
generic E. coli in poultry-litter-amended soils, com-
pared with concentrations in soil amended with dairy
or horse manure. This finding is in agreement with
previous work conducted in outdoor lysimeter sys-
tems, which observed a slower decline of E. coli
O157:H7 in soil amended with poultry litter than in
soil amended with cattle manure (Nyberg, Vinneras,
Ottoson, Aronsson, & Albihn, 2010). In a published
greenhouse study, poultry litter–amended soil was
also reported to have supported significantly higher
concentrations of E. coli O157:H7 and generic E. coli
compared with soils amended with dairy manure liq-
uids or horse manure (Sharma et al., 2016). The au-
thors from these two studies suggested that higher
nutrient content (nitrogen and phosphorus) provided
by poultry litter may have supported the extended
survival observed in poultry litter–amended soil (Ny-
berg et al., 2010; Sharma et al., 2016). Soil moisture
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Fig. 5. Comparison of the average observed E. coli O157:H7 and generic E. coli concentrations in the survival data set with predicted values
using the Random Forest model. The bottom and top of the boxes represent the first and the third quartiles, whereas the bars inside the
whiskers represent the median values. The upper and lower ends of the whiskers (the vertical lines) represent the largest and smallest values
in 1.5 × IQR (inter-quartile range, the distance between the first and the third quartile), and the dots represent values outside the 1.5 ×
IQR.

content and days of rain since the previous sampling
day were also identified as influential environmental
factors affecting survival of E. coli in amended soil es-
pecially in the first 50 days after inoculation. Sharma
et al. (2019), in a descriptive analysis of the same data
set used in the current study, also showed in specific
seasonal trials where initial soil moisture content was
between 11% and 12.1% that E. coli survival was
supported for longer durations than in trials that did
not have a soil moisture content within this range.
Our finding is also consistent with other studies that
have demonstrated that soil moisture content (Mu-
biru et al., 2000; van Elsas et al., 2011; Vidovic et al.,
2007; Williams et al., 2015) and rainfall (and high hu-
midity associated with rain events) (Pang, McEgan,
Micallef, & Pradhan, 2018; Pang, McEgan, Mishra,
Micallef, & Pradhan, 2017; Park et al., 2015; Strawn
et al., 2013; Weller, Wiedmann, & Strawn, 2015) are
variables influencing the survival of pathogenic bac-
teria in (amended) soil.

As generic E. coli strains are sometimes used as
surrogate for pathogens such as E. coli O157:H7, it
is imperative to understand their behavior relative
to E. coli O157:H7 in environmental reservoirs such
as amended soils (Franz et al., 2014). Our model re-
sults indicated that E. coli O157:H7 generally de-
clined over time at a rate similar to that of generic

E. coli in amended soils. In addition, under dynamic
field conditions, the impact of environmental factors
on the survival of E. coli O157:H7 was similar com-
pared to that of generic E. coli. These findings sug-
gested that generic E. coli can be potentially used
as a surrogate to predict survival patterns of E. coli
O157:H7 in amended soils.

We also identified several areas that can be
improved in our modeling approach. Our predictive
model included 17 potential agricultural and envi-
ronmental variables that may influence the survival
of E. coli in amended soil under field conditions.
However, model predictions could potentially be im-
proved if additional agricultural and environmental
variables, such as pH, soil type, activity and diversity
of soil microbiota, and soil chemical properties,
were included when such data become available.
Optimally, we would develop a generalizable pre-
dictive survival model by training the model using
a diverse data set that contains information from
multiple different geographic regions across the
United States. As such a comprehensive data set is
not currently available, we investigated whether the
current model was generalizable by conducting a
cross-validation using the three geographic locations
and the inherent heterogeneity in our survival data
sets across different experiment locations. Results
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Fig. 6. Comparison between the observed and the predicted concentrations of E. coli O157:H7 and generic E. coli in amended soil for the
distinct patterns identified in the survival data set: (A) exponential decline; (B) initial increase and exponential decline; (C) exponential
decline with intermediate peak; (D) exponential decline with one moderate peak; (E) initial increase with exponential decline and one
moderate peak; (F) initial increase with exponential decline and two moderate peaks.

from model cross-validations based on the three
experiment locations were generally satisfactory, in-
dicating that the survival model could be potentially
used in other geographic locations. Our results also
demonstrated that the representativeness and size of

the training data set were crucially impacting the sur-
vival model prediction accuracy. This indicates that
the Random Forest model can be validated for other
geographic regions and predictive performance can
be enhanced by using additional data that contain
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information from different geographic regions when
such data become available. In addition, Random
Forest, as a machine learning algorithm, focuses on
prediction but does not explicitly contribute to our
knowledge of the underlying causal mechanisms
for bacterial population dynamics in amended soil
(Clark & Golder, 2015; Jones & Linder, 2015). By in-
cluding variable importance and partial dependence
measurements that demonstrate the relationship
between influential variables and microbial survival
in amended soil, our analysis provided insights about
the underlying mechanisms and enhanced the inter-
pretability of machine learning model results. As sug-
gested by Baker et al. (2018), future research should
be directed toward enabling a symbiotic relationship
between mechanistic modeling and machine learning
to embrace the strengths of both approaches.

In conclusion, we developed and validated a
Random Forest model that can predict changes in
concentrations of E. coli in amended soil observed
over time under dynamic agricultural and environ-
mental conditions. The modeling approach reported
here also can be used to predict the survival of other
enteric bacteria, such as Salmonella, in amended
soils, if data elements similar to those reported in this
article are available for the pathogens in question.
Cross-validation results indicated that our model can
be potentially generalized to other geographic re-
gions and incorporated into a risk assessment model
for evaluating the risks associated with application of
untreated BSAAO. Data sets that contain informa-
tion from additional geographic regions, when avail-
able, can be used to validation the Random For-
est model and also can be incorporated to enhance
model predictive performance.
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